11-1 Lagrangian

다음은 다음 최적화 문제에 대한 Lagrangian 형태를 살펴본다. 여기서, 최적화 문제는 반드시 convex일 필요는 없다.

minxf(x) s.t.hi(x)0,i=1,,m lj(x)=0,j=1,,r

이 때, Lagrangian은 아래와 같이 정의한다.

L(x,u,v)=f(x)+i=1muihi(x)+j=1rvjlj(x)

여기서, uRm, vRr, u0 (implicitly, L(x,u,v)= for u<0).

위 Lagrangian에서, hi(x)0, lj(x)=0 이므로,

L(x,u,v)=f(x)+i=1muihi(x)0+j=1rvjlj(x)=0f(x)

즉, Lagrangian은 다음의 중요한 성질을 갖는다.

모든, u0, v에 대해, f(x)L(x,u,v) at each feasible x

예를 들면, 아래 그림에서,

[Fig 1] Example of Lagrangian[1]

  • Solid line은 함수 f를 의미
  • Dashed line은 함수 h를 의미함. 여기서 feasible set 대략 [0.46,0.46]
  • 각 Dotted line은 u0, v에 대한 함수 L(x,u,v)를 의미