05-05 Semidefinite Programming (SDP)

General LP에서 inequality constraint가 linear matrix inequality(LMI)로 교체되면, 이는 Semidefnite Program(SDP)이다.

Semidefinite Program

\[\begin{align} &\text{minimize}_{x} &&{c^T x + d} \\\\ &\text{subject to } &&{xF_1 + \dotsb + x_nF_n + G \preceq 0} \\\\ & &&{Ax = b},\\\\ & \text{where } &&G, F_1, \dotsb, F_n \in \mathbb{S}^{k} \text{ and } A \in \mathbb{R}^{\text{p x n}}. \end{align}\\\]
  • \(G, F_1, \dotsb, F_n\)가 모두 diagonal matrices면, 위의 inequality constraint는 n개의 linear inequalities와 동일해진다. 이 경우 SDP는 LP와 같다.
  • 복수의 LMI는 다음과 같이 단일의 LMI로 표현된다.
    \[x_1\hat{F_1} + \dotsb + x_n\hat{F_n} + \hat{G} \preceq 0, \phantom{5} x_1\tilde{F_1} + \dotsb + x_n\tilde{F_n} + \tilde{G} \preceq 0\]
    is equivalent to single LMI:
    \[x_1 \begin{bmatrix} \hat{F_1} & 0 \\\\ 0 & \tilde{F_1} \\\\ \end{bmatrix} + x_2 \begin{bmatrix} \hat{F_2} & 0 \\\\ 0 & \tilde{F_2} \\\\ \end{bmatrix} + \dotsb + x_n \begin{bmatrix} \hat{F_n} & 0 \\\\ 0 & \tilde{F_n} \\\\ \end{bmatrix} + \begin{bmatrix} \hat{G_1} & 0 \\\\ 0 & \tilde{G_1} \\\\ \end{bmatrix} \preceq 0\]

SDP in Standard form

다음과 같이 표현될 때, semidefinite program의 standard form이라고 한다.

Standard form SDP

\[\begin{align} &\text{minimize}_{X} &&{tr(CX)} \\\\ &\text{subject to } &&{tr(A_iX) = b_i, \phantom{5} i=1,\dotsc,p} \\\\ & &&{X \succeq 0},\\\\ & \text{where } C, A_1, \dotsc, A_p \in \mathbb{S}^n. \end{align}\]
  • Recall: \(tr(CX) = \sum_{i,j=1}^n C_{ij}X_{ij}\)

모든 SDP는 아래의 과정에 의해 standard form SDP로 변형될 수 있다.

Converting SDPs to standard form

Step1. Slack variable S를 이용하여 inequality constraint를 equality constraint로 바꿔준다.

\[\begin{align} &\text{minimize}_{x} &&{c^T x + d} \\\\ &\text{subject to } &&{\sum_{l=1}^n F_l x_l+ S = -G} \\\\ & &&{Ax = b}\\\\ & &&{S \succeq 0} \end{align}\]

Step2. step1에서 유도된 equality constraint를 각 component에 대한 식으로 변형한다.

\[\begin{align} &\text{minimize}_{x} &&{c^T x + d} \\\\ &\text{subject to } &&{\sum_{l=1}^n (F_l x_l)_{ij} + S_{ij} = -G_{ij}, i,j = 1, \dotsc, k} \\\\ & &&{Ax = b}\\\\ & &&{S \succeq 0} \end{align}\]

Step3. x를 두 개의 nonnegative variables로 치환한다. \(x = x^{+} - x^{-}\)이고, \(x^{+} \text{, } x^{-} \succeq 0.\)

\[\begin{align} &\text{minimize}_{x} &&{c^T (x^{+} - x^{-}) + d} \\\\ &\text{subject to } &&{\sum_{l=1}^n (F_l x^{+} _l)_{ij} - \sum_{l=1}^n (F_l x^{-} _l)_{ij} + S_{ij} = -G_{ij}, i,j = 1, \dotsc, k} \\\\ & &&{Ax^{+} - Ax^{+} = b}\\\\ & &&{S \succeq 0}\\\\ & &&{x^{+} \text{, } x^{-} \succeq 0}. \end{align}\]

Step4. \(X, C, \tilde{A}, \tilde{b}\)를 정의.

  • All the blanks are zero.

\(X = \begin{bmatrix} diag(x^{+})\\\\ & diag(x^{-})\\\\ && s_{11}\\\\ &&& s_{12}\\\\ &&&&\dotsc\\\ &&&&&s_{ij}\\\\ &&&&&&\dotsc \\\ &&&&&&&s_{kk}\\\\ \end{bmatrix} ,\) \(C = \begin{bmatrix} diag(c)\\\\ & -diag(c) &\\\\ & & O_{k^2 \text{ x } k^2}\\\\ \end{bmatrix} ,\) \(P_{ij} = \begin{bmatrix} (F_1)_{ij}\\\\ &(F_2)_{ij}\\\\ &&\dotsc\\\\ &&&(F_n)_{ij}\\\\ &&&&-(F_1)_{ij}\\\\ &&&&&-(F_2)_{ij}\\\\ &&&&&&\dotsc\\\\ &&&&&&&-(F_n)_{ij}\\\\ &&&&&&&&0&\\\\ &&&&&&&&&\dotsc\\\\ &&&&&&&&&&1 \phantom{1} (\text{ij th position})\\\\ &&&&&&&&&&&\dotsc\\\\ &&&&&&&&&&&&0\\\\ \end{bmatrix} ,\)

\(Q_{i}= \begin{bmatrix} diag(A_i)\\\\ &-diag(A_i)\\\\ &&O_{k^2 \text{ x } k^2}\\\\ \end{bmatrix}\) (\(A_i\) is ith row of A), \(\tilde{A} = \begin{bmatrix} P_{11}\\\\ \dotsc\\\\ P_{kk}\\\\ Q_{1}\\\\ \dotsc\\\\ Q_{p}\\\\ \end{bmatrix} -G_{ij} = tr(P_{ij}X) ,\)

\(b_i = tr(Q_iX)\),

\(\tilde{b} = \begin{bmatrix} -G_{11}\\\\ \dotsc\\\\ -G_{kk}\\\\ b_{1}\\\\ \dotsc\\\\ b_{p}\\\\ \end{bmatrix}\).

Step5. Step3의 문제를 \(X, C, \tilde{A}, \tilde{b}\)로 치환.

\[\begin{align} &\text{minimize}_{X} &&{tr(CX)} \\\\ &\text{subject to } &&{tr(\tilde{A}_iX) = \tilde{b}_i, \phantom{5} i=1,\dotsc,k^2+p} \\\\ & &&{X \succeq 0}. \end{align}\]

SOCP and equivalent SDP

Schur complement[8]를 이용하여 SOCP의 inequality constraint를 표현하면 SOCP는 SDP의 어떤 특수한 경우로 변형된다. 즉, SOCP \(\subseteq\) SDP의 관계가 성립한다.

Recall: Second-Order Cone Program

\[\begin{align} &\text{minimize}_{x} &&{f^T x} \\\\ &\text{subject to } &&{\| A_i x + b_i \|_2 \leq c_i^T x + d_i, i = 1, \dotsc, m}\\\\ & &&{Fx = g}. \end{align}\]

SOCP to SDP by Schur complement

\[\begin{align} &\text{minimize}_{x} &&{f^T x} \\\\ &\text{subject to } && \begin{bmatrix} (c_i^T x + d)I & A_i x + b_i \\\\ (A_i x + b_i)^T & c_i^T x + d \\\\ \end{bmatrix} \succeq 0, i = 1, \dotsc, m\\\\ & &&{Fx = g}. \end{align}\]