모두를 위한 컨벡스 최적화
Home
01. Introduction
02. Convex Sets
03. Convex Functions
04. Convex Optimization Basis
05. Canonical Problems
06. Gradient Descent
07. Subgradient
08. Subgradient Method
09. Proximal Gradient Descent and Acceleration
10. Duality in Linear Programs
11. Duality in General Programs
12. KKT Conditions
13. Duality uses and correspondences
14. Newton's Method
15. Barrier Method
16. Duality Revisited
17. Primal-Dual Interior-Point Methods
18. Quasi-Newton Methods
19. Proximal Netwon Method
20. Dual Methods
21. Alternating Direction Method of Mulipliers
22. Conditional Gradient Method
23. Coordinate Descent
24. Mixed Integer Programming 1
25. Mixed Integer Programming 2
26. Reference
Currently v1.1.0
© 2024. All rights reserved.
모두를 위한 컨벡스 최적화
20-02 Dual Decomposition
본 절에서는 dual을 이용하여 문제를 decomposition하는 기법에 대해 알아본다.
Previous Post
20-01-01 Convergence Analysis
Next Post
20-02-01 Dual Decomposition with Equality Constraint