07-03-02 Derivation of First-Order Optimality Condition
만약 \(f\)가 볼록함수이고 미분가능하면, subgradient 최적 조건은 first-order 최적 조건과 일치함을 아래와 같이 증명할 수 있다.
Proof
\[\begin{alignat}{2} f(x^{*}) = \min_{x\in C} f(x) \quad & \Longleftrightarrow & & \quad f(x^{*}) = \min_x f(x) + I_C(x) \\ \quad & \Longleftrightarrow & &\quad 0 \in \partial(f(x^{*}) + I_C(x^{*})) \\ \quad & \Longleftrightarrow & &\quad 0 \in \{\nabla f(x^{*}) \} + \mathcal{N}_C(x^{*}) \\ \quad & \Longleftrightarrow & &\quad - \nabla f(x^{*}) \in \mathcal{N}_C(x^{*}) \\ \quad & \Longleftrightarrow & &\quad - \nabla f(x^{*})^Tx^{*} \geq -\nabla f(x^{*})^Ty, \text{ for all } y \in C \\ \quad & \Longleftrightarrow & &\quad \nabla f(x^{*})^T(y-x^{*}) \geq 0, \text{ for all } y \in C \end{alignat}\]